Traveling waves of two-component reaction-diffusion systems arising from higher order autocatalytic models
نویسندگان
چکیده
We study the existence and uniqueness of traveling wave solutions for a class of twocomponent reaction diffusion systems with one species being immobile. Such a system has a variety of applications in epidemiology, bio-reactor model, and isothermal autocatalytic chemical reaction systems. Our result not only generalizes earlier results of Ai and Huang (Proceedings of the Royal Society of Edinburgh 2005; 135A:663–675), but also establishes the existence and uniqueness of traveling wave solutions to the reaction-diffusion system for an isothermal autocatalytic chemical reaction of any order in which the autocatalyst is assumed to decay to the inert product at a rate of the same order.
منابع مشابه
Computational Study of Traveling Wave Solutions and Global Stability of Predator-Prey Models
In this thesis, we study two types of reaction-diffusion systems which have direct applications in understanding wide range of phenomena in chemical reaction, biological pattern formation and theoretical ecology. The first part of this thesis is on propagating traveling waves in a class of reaction-diffusion systems which model isothermal autocatalytic chemical reactions as well as microbial gr...
متن کاملPerron Theorem in the Monotone Iteration Method for Traveling Waves in Delayed Reaction-diffusion Equations
In this paper we revisit the existence of traveling waves for delayed reaction diffusion equations by the monotone iteration method. We show that Perron Theorem on existence of bounded solution provides a rigorous and constructive framework to find traveling wave solutions of reaction diffusion systems with time delay. The method is tried out on two classical examples with delay: the predator-p...
متن کاملSpreading speeds and traveling waves for a model of epidermal wound healing
In this paper, we shall establish the spreading speed and existence of traveling waves for a non-cooperative system arising from epidermal wound healing and characterize the spreading speed as the slowest speed of a family of non-constant traveling wave solutions. Our results on the spreading speed and traveling waves can also be applied to a large class of non-cooperative reaction-diffusion sy...
متن کاملInvasion Generates Periodic Traveling Waves (Wavetrains) in Predator-Prey Models with Nonlocal Dispersal
Periodic Traveling waves (wavetrains) have been studied extensively in systems of reaction-diffusion equations. An important motivation for this work is the identification of periodic Traveling waves of abundance in ecological data sets. However, for many natural populations diffusion is a poor representation of movement, and spatial convolution with a dispersal kernel is more realistic because...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کامل